- Set the number of simulations.
NumbSims <- 2e6
- Define the variables and their distributions
unifpop <- runif(NumbSims, min=20, max=30)
poispop <- rpois(NumbSims, lambda = 35)
normpop <- rnorm(NumbSims, 15, 4)
tailoredpop <- sample(c(10,10,10,30,30,30,30,30,40), NumbSims, replace = TRUE)
- Define the model
combined <- unifpop + poispop + normpop
- Explore the results
library(ggplot2)
plt <- ggplot(data.frame(data=c(combined, unifpop, poispop, normpop), labels=rep(c("combined", "unifpop", "poispop", "normpop"), rep(NumbSims,4))), aes(x=data)) +
stat_bin(aes(fill=labels), position="identity", binwidth=0.25, alpha=0.5) +
theme_bw()
plt

LS0tCnRpdGxlOiAiTW9udGUgQ2FybG8gU2ltdWxhdGlvbiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKPGhyPgoxLiBTZXQgdGhlIG51bWJlciBvZiBzaW11bGF0aW9ucy4KCmBgYHtyfQpOdW1iU2ltcyA8LSAyZTYKYGBgCgo8aHI+CjIuIERlZmluZSB0aGUgdmFyaWFibGVzIGFuZCB0aGVpciBkaXN0cmlidXRpb25zCmBgYHtyfQp1bmlmcG9wIDwtIHJ1bmlmKE51bWJTaW1zLCBtaW49MjAsIG1heD0zMCkKcG9pc3BvcCA8LSBycG9pcyhOdW1iU2ltcywgbGFtYmRhID0gMzUpCm5vcm1wb3AgPC0gcm5vcm0oTnVtYlNpbXMsIDE1LCA0KQp0YWlsb3JlZHBvcCA8LSBzYW1wbGUoYygxMCwxMCwxMCwzMCwzMCwzMCwzMCwzMCw0MCksIE51bWJTaW1zLCByZXBsYWNlID0gVFJVRSkKYGBgCgo8aHI+CjMuIERlZmluZSB0aGUgbW9kZWwKYGBge3J9CmNvbWJpbmVkIDwtIHVuaWZwb3AgKyBwb2lzcG9wICsgbm9ybXBvcApgYGAKCjxocj4KNC4gRXhwbG9yZSB0aGUgcmVzdWx0cwpgYGB7cn0KbGlicmFyeShnZ3Bsb3QyKQoKcGx0IDwtIGdncGxvdChkYXRhLmZyYW1lKGRhdGE9Yyhjb21iaW5lZCwgdW5pZnBvcCwgcG9pc3BvcCwgbm9ybXBvcCksIGxhYmVscz1yZXAoYygiY29tYmluZWQiLCAidW5pZnBvcCIsICJwb2lzcG9wIiwgIm5vcm1wb3AiKSwgcmVwKE51bWJTaW1zLDQpKSksIGFlcyh4PWRhdGEpKSArCiAgc3RhdF9iaW4oYWVzKGZpbGw9bGFiZWxzKSwgcG9zaXRpb249ImlkZW50aXR5IiwgYmlud2lkdGg9MC4yNSwgYWxwaGE9MC41KSArCiAgdGhlbWVfYncoKQpwbHQKYGBg