Workshop Smart Business

  Business Management Studies
Find this presentation at:

minorsmart.github.io/presentaties/hhs/
MSI Logo

About us

  • Dimphany Hendriksen
  • Caroline Hezemans
  • Witek ten Hove

Wâh ligt Nèmegen èguhnlèk?

Programme - Part I

From Till Topic
10:00 10:15h Intro customer experience
10:15 10:30h Target group addressing
10:30 10:45h Target group identification
10:45 11:15h Personas
11:15 12:00h Activity

Business Model

Intro Customer Experience

  • Target group identification
  • Target group addressing

Target Group Addressing

"Start with why"

Target group identification

Personas

Case Coolblue

Activity

Programme - Part II

From Till Topic
13:00 13:30h Financial value
13:30 14:00h Cost / Revenue / Growth
14:00 14:30h Risk
14:30 15:30h Monte Carlo simulation
16:00 17:00h Data analytics
17:00 18:00h Machine learning

Let's staRt!


                      install.packages(c("dplyr", "tidyr",
                                         "ggplot2", "gsheet",
                                         "leaflet", "knitr"))
                     
                
  • Download Rmd file
  • Open notebook in RStudio

Financial Model


                      t <- 0
                      sales <- 1000000
                      varcosts <- sales * 0.7
                      fixcosts <- 50000
                      gresult <- sales - varcosts - fixcosts
                      taxes <- gresult * 0.25
                      nresult <- gresult - taxes

                      finres <- data.frame(t, sales, varcosts,
                                           fixcosts, gresult,
                                           taxes, nresult)
                     
                

GRowth


                      growthcalc <- function(startvalue, rate) {
  
                                               endvalue <- startvalue * (1 + rate)
                                               return(endvalue)
  
                                    }
                     
                

GRowth


                      growth <- 0.15
                      inflation <- 0.012
                      
                      for (s in c(1:10)) {
  
                      t <- c(t, s)
                      sales <- c(sales,
                                 growthcalc(sales[s],
                                            growth)
                                 )
                      fixcosts <- c(fixcosts,
                                    growthcalc(fixcosts[s],
                                               inflation)
                                    )
  
                      }
                     
                

Risk


                      stdevg <- 0.12
                      stdevi <- 0.003

                      for (s in c(1:10)) {
  
                          t <- c(t, s)
                          sales <- c(sales,
                                     growthcalc(sales[s],
                                                rnorm(1, mean = growth, sd = stdevg)
                                                )
                                      )
                          
                          fixcosts <- c(fixcosts,
                                        growthcalc(fixcosts[s],
                                                   rnorm(1, mean = inflation, sd = stdevi)
                                                   )
                                       )
  
                      }
                     
                

Value

                  
                      presval <- function(futurevalue, discountrate, nperiods) {
  
                      presentvalue <- futurevalue / (1 + discountrate)^nperiods
  
                                 }

                      discrate <- 0.05
                      finres.uncertain <- mutate(finres.uncertain,
                                                 nresult.pres = presval(nresult,
                                                                        discrate,
                                                                        t)
                                                 )

                      investment <- 3000000
                      netpresval <- -investment + sum(finres.uncertain$nresult.pres)
                    
                 

Monte Carlo

Monte Carlo

Excercise Monte Carlo

Monte CaRlo

                  
                      NumbSims <- 2e6
                      
                      unifpop <- runif(NumbSims, min=20, max=30)
                      poispop <- rpois(NumbSims, lambda = 35)
                      normpop <- rnorm(NumbSims, 15, 4)
                      
                      combined <- unifpop + poispop + normpop
                    
                 

CLT?

Analytics

In God we trust. All others must bring data




                      library(gsheet)

                      personaDF <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1t730hwcCaMzOB-eLAbHlO5Xlj4HilKfxaRV8LQok8Ko/")
                     
                

Analytics

Machine LeaRning

Smiley face

Resources

Thank you!