Workshop Smart Business
Business Management Studies
Find this presentation at:
minorsmart.github.io/presentaties/hhs/
About us
- Dimphany Hendriksen
- Caroline Hezemans
- Witek ten Hove
Wâh ligt Nèmegen èguhnlèk?
Programme - Part I
| From |
Till |
Topic |
| 10:00 |
10:15h |
Intro customer experience |
| 10:15 |
10:30h |
Target group addressing |
| 10:30 |
10:45h |
Target group identification |
| 10:45 |
11:15h |
Personas |
| 11:15 |
12:00h |
Activity |
Business Model
Intro Customer Experience
- Target group identification
- Target group addressing
"Start with why"
Target group identification
Personas
Case Coolblue
Activity
Programme - Part II
| From |
Till |
Topic |
| 13:00 |
13:30h |
Financial value |
| 13:30 |
14:00h |
Cost / Revenue / Growth |
| 14:00 |
14:30h |
Risk |
| 14:30 |
15:30h |
Monte Carlo simulation |
| 16:00 |
17:00h |
Data analytics |
| 17:00 |
18:00h |
Machine learning |
Let's staRt!
install.packages(c("dplyr", "tidyr",
"ggplot2", "gsheet",
"leaflet", "knitr"))
- Download Rmd file
- Open notebook in RStudio
Financial Model
t <- 0
sales <- 1000000
varcosts <- sales * 0.7
fixcosts <- 50000
gresult <- sales - varcosts - fixcosts
taxes <- gresult * 0.25
nresult <- gresult - taxes
finres <- data.frame(t, sales, varcosts,
fixcosts, gresult,
taxes, nresult)
GRowth
growthcalc <- function(startvalue, rate) {
endvalue <- startvalue * (1 + rate)
return(endvalue)
}
GRowth
growth <- 0.15
inflation <- 0.012
for (s in c(1:10)) {
t <- c(t, s)
sales <- c(sales,
growthcalc(sales[s],
growth)
)
fixcosts <- c(fixcosts,
growthcalc(fixcosts[s],
inflation)
)
}
Risk
stdevg <- 0.12
stdevi <- 0.003
for (s in c(1:10)) {
t <- c(t, s)
sales <- c(sales,
growthcalc(sales[s],
rnorm(1, mean = growth, sd = stdevg)
)
)
fixcosts <- c(fixcosts,
growthcalc(fixcosts[s],
->rnorm(1, mean = inflation, sd = stdevi)
)
)
}
Value
presval <- function(futurevalue, discountrate, nperiods) {
presentvalue <- futurevalue / (1 + discountrate)^nperiods
}
discrate <- 0.05
finres.uncertain <- mutate(finres.uncertain,
nresult.pres = presval(nresult,
discrate,
t)
)
investment <- 3000000
netpresval <- -investment + sum(finres.uncertain$nresult.pres)
Monte Carlo
Monte CaRlo
NumbSims <- 2e6
unifpop <- runif(NumbSims, min=20, max=30)
poispop <- rpois(NumbSims, lambda = 35)
normpop <- rnorm(NumbSims, 15, 4)
combined <- unifpop + poispop + normpop
CLT?
Analytics
In God we trust. All others must bring data
library(gsheet)
personaDF <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1t730hwcCaMzOB-eLAbHlO5Xlj4HilKfxaRV8LQok8Ko/")
Machine LeaRning

Resources
- CRAN : 10,000+ R packages (NLP, ML, NN, ....)
- R-Bloggers : very active community
- Data Science Meetups
- Kaggle
- And many, many, many, many, many, many, many, many more!
Thank you!